Опыты э резерфорда по изучению рассеяния. Опыт по рассеянию альфа частиц. Другие открытия, полученные в процессе изучения атома


39. Опыт по рассеянию альфа частиц.

Первая попытка создания модели атома на основе накопленных экспериментальных данных (1903 г.) принадлежит Дж. Томсону. Он считал, что атом представляет собой электронейтральную систему шарообразной формы радиусом, примерно равным 10–10 м. Положительный заряд атома равномерно распределен по всему объему шара, а отрицательно заряженные электроны находятся внутри него (рис. 6.1.1). Для объяснения линейчатых спектров испускания атомов Томсон пытался определить расположение электронов в атоме и рассчитать частоты их колебаний около положений равновесия. Однако эти попытки не увенчались успехом. Через несколько лет в опытах великого английского физика Э. Резерфорда было доказано, что модель Томсона неверна.

Рисунок 6.1.1.

Модель атома Дж. Томсона

Первые прямые эксперименты по исследованию внутренней структуры атомов были выполнены Э. Резерфордом и его сотрудниками Э. Марсденом и Х. Гейгером в 1909–1911 годах. Резерфорд предложил применить зондирование атома с помощью α-частиц, которые возникают при радиоактивном распаде радия и некоторых других элементов. Масса α-частиц приблизительно в 7300 раз больше массы электрона, а положительный заряд равен удвоенному элементарному заряду. В своих опытах Резерфорд использовал α- частицы с кинетической энергией около 5 МэВ (скорость таких частиц очень велика – порядка 107 м/с, но все же значительно меньше скорости света). α-частицы – это полностью ионизированные атомы гелия. Они были открыты Резерфордом в 1899 году при изучении явления радиоактивности. Этими частицами Резерфорд бомбардировал атомы тяжелых элементов (золото, серебро, медь и др.). Электроны, входящие в состав атомов, вследствие малой массы не могут заметно изменить траекторию α-частицы. Рассеяние, то есть изменение направления движения α-частиц, может вызвать только тяжелая положительно заряженная часть атома. Схема опыта Резерфорда представлена на рис. 6.1.2.

Рисунок 6.1.2.

Схема опыта Резерфорда по рассеянию α-частиц. K – свинцовый контейнер с радиоактивным веществом, Э – экран, покрытый сернистым цинком, Ф – золотая фольга, M – микроскоп)

От радиоактивного источника, заключенного в свинцовый контейнер, α-частицы направлялись на тонкую металлическую фольгу. Рассеянные частицы попадали на экран, покрытый слоем кристаллов сульфида цинка, способных светиться под ударами быстрых заряженных частиц. Сцинтилляции (вспышки) на экране наблюдались глазом с помощью микроскопа. Наблюдения рассеянных α-частиц в опыте Резерфорда можно было проводить под различными углами φ к первоначальному направлению пучка. Было обнаружено, что большинство α-частиц проходит через тонкий слой металла, практически не испытывая отклонения. Однако небольшая часть частиц отклоняется на значительные углы, превышающие 30°. Очень редкие α-частицы (приблизительно одна на десять тысяч) испытывали отклонение на углы, близкие к 180°.

Этот результат был совершенно неожиданным даже для Резерфорда. Его представления находилbcm в резком противоречии с моделью атома Томсона, согласно которой положительный заряд распределен по всему объему атома. При таком распределении положительный заряд не может создать сильное электрическое поле, способное отбросить α-частицы назад. Электрическое поле однородного заряженного шара максимально на его поверхности и убывает до нуля по мере приближения к центру шара. Если бы радиус шара, в котором сосредоточен весь положительный заряд атома, уменьшился в n раз, то максимальная сила отталкивания, действующая на α-частицу, по закону Кулона возросла бы в n2 раз. Следовательно, при достаточно большом значении n α-частицы могли бы испытать рассеяние на большие углы вплоть до 180°. Эти соображения привели Резерфорда к выводу, что атом почти пустой, и весь его положительный заряд сосредоточен в малом объеме. Эту часть атома Резерфорд назвал атомным ядром. Так возникла ядерная модель атома. Рис. 6.1.3 иллюстрирует рассеяние α-частицы в атоме Томсона и в атоме Резерфорда.

Эрнест Резерфорд - это один из основателей фундаментального учения о внутреннем строении атома. Родился ученый в Англии, в семье эмигрантов из Шотландии. Резерфорд был четвертым ребенком в своей семье, при этом оказался самым талантливым. Особый вклад ему удалось внести в теорию строения атома.

Первоначальные представления о строении атома

Нужно отметить, что до того, как был проведен знаменитый опыт Резерфорда по рассеянию альфа-частиц, господствующей на то время идеей о строении атома была модель Томпсона. Этот ученый был уверен, что положительный заряд равномерно заполнял весь объем атома целиком. Отрицательно заряженные электроны, считал Томпсон, были будто бы вкраплениями в него.

Предпосылки к научному перевороту

После окончании школы Резерфорд как самый талантливый ученик получил грант в 50 фунтов для дальнейшего обучения. Благодаря этому он сумел поступить в колледж в Новой Зеландии. Далее молодой ученый сдает экзамены в Кентерберийском университете и начинает серьезно заниматься физикой и химией. В 1891 году Резерфорд сделал свой первый доклад на тему «Эволюция элементов». В нем впервые в истории была обозначена идея о том, что атомы представляют собой сложнейшие структуры.

Тогда в научных кругах господствовала идея Дальтона о том, что атомы неделимы. Всем, кто окружал Резерфорда, его идее показались совершенным безумием. Молодому ученому приходилось постоянно приносить извинения коллегам за свою «чепуху». Но через 12 лет Резерфорд все же сумел доказать свою правоту. У Резерфорда появился шанс продолжить свои исследования в Кавендишской лаборатории в Англии, где он начал изучать процессы ионизации воздуха. Первым открытием Резерфорда были альфа- и бета-лучи.

Опыт Резерфорда

Кратко об открытиии можно рассказать так: в 1912 году Резерфорд вместе со своими помощниками провел свой знаменитый опыт - альфа-частицы испускались из свинцового источника. Все частицы, кроме тех, что оказывались поглощенными свинцом, двигались вдоль установленного канала. Их узкий поток попадал на тонкий слой фольги. Эта линия была перпендикулярна листу. Опыт Резерфорда по рассеянию альфа-частиц доказал: те частицы, которые проходили сквозь лист фольги насквозь, вызывали так называемые сцинтилляции на экране.

Этот экран был покрыт особым веществом, которое начинало светиться при попадании на него альфа-частиц. Пространство между слоем и экраном было заполнено вакуумом для того, чтобы альфа-частицы не рассеивались в воздухе. Такой прибор позволил исследователям наблюдать частицы, рассеивающиеся под углом порядка 150°.

Если же фольгу не использовали в качестве препятствия перед пучком из альфа-частиц, то на экране образовывался светлый кружок из сцинтилляций. Но как только перед их лучом ставили барьер из золотой фольги, то картина сильно менялась. Вспышки появлялись не только вне этого кружка, но и на противоположной стороне фольги. Опыт Резерфорда по рассеянию альфа-частиц показал, что большинство частиц проходит через фольгу без заметных изменений в траектории движения.

При этом некоторые частицы отклонялись под довольно большим углом и даже отбрасывались назад. На каждые 10 000 свободно проходящих через слой золотой фольги частиц лишь одна отклонялась на угол, превышавший 10° - в виде исключения одна из частиц отклонялась на такой угол.

Причина, по которой отклонялись альфа-частицы

То, что детально рассмотрел и доказал опыт Резерфорда - строение атома. Такое положение свидетельствовало о том, что атом не представляет собой сплошное образование. Большинство частиц свободно проходили через фольгу толщиной в один атом. И поскольку масса альфа-частицы практически в 8 000 раз больше массы электрона, то последний не мог бы существенно повлиять на траекторию альфа-частицы. Это могло бы быть сделанным лишь атомным ядром - телом малых размеров, обладающим почти всей массой и всем электрическим зарядом атома. На тот момент это стало значительным прорывом английского физика. Опыт Резерфорда считается одной из важнейших ступеней в становлении науки о внутреннем строении атома.

Другие открытия, полученные в процессе изучения атома

Эти исследования стали прямым доказательством того, что положительный заряд атома находится внутри его ядра. Эта область занимает весьма малое пространство по сравнению с его целостными размерами. В таком малом объеме рассеяние альфа-частиц оказалось очень маловероятным. А те частицы, которые проходили вблизи области атомного ядра, испытывали резкие отклонения от траектории, ведь отталкивающие силы между альфа-частицей и ядром атома были очень мощными. Опыт Резерфорда по рассеянию альфа-частиц доказал вероятность того, что альфа-частица попадет прямо в ядро. Правда, вероятность была очень мала, но все же не равна нулю.

Это был не единственный факт, который доказал опыт Резерфорда. Кратко строение атома изучали и его коллеги, которые сделали ряд других важных открытий. Кроме учения о том, что альфа-частицы представляют собой быстро движущиеся ядра гелия.

Ученый смог описать строение атома, в котором ядро занимает незначительную часть всего объема. Его опыты доказали, что практически весь заряд атома сосредоточен внутри его ядра. При этом происходят как случаи отклонения альфа-частиц, так и случаи их столкновения с ядром.

Опыты Резерфорда: ядерная модель атома

В 1911 году Резерфорд после многочисленных исследований предложил которую назвал планетарной. Согласно данной модели, внутри атома расположено ядро, которое содержит в себе практически всю массу частицы. Электроны движутся вокруг ядра подобно тому, как это делают планеты вокруг Солнца. Из их совокупности образуется так называемое электронное облако. Атом же имеет нейтральный заряд, как показал опыт Резерфорда.

Строение атома в дальнейшем заинтересовало ученого по имени Нильс Бор. Именно он доработал учение Резерфорда, ведь до Бора планетарная модель атома стала сталкиваться с трудностями объяснения. Так как электрон движется вокруг ядра по определенной орбите с ускорением, рано или поздно он должен упасть на ядро атома. Однако Нильс Бор смог доказать, что внутри атома законы классической механики уже не действуют.

Опыт Резерфорда по рассеянию альфа-частиц

Основой современных представлений о строении атома явились опыты Резерфорда по рассеиванию - частиц. - частицы возникают в процессе радиоактивного распада, их заряд положителен и равен удвоенному заряду электрона. Кинетическая энергия и скорость - частиц велики:

В опытах Резерфорда выделяемый отверстием (рис. 39) узкий пучок - частиц, испускаемых радиоактивным веществом Р, падал на очень тонкую металлическую фольгу Ф. На атомах фольги происходило рассеяние - частиц. Вокруг фольги располагался экран Э из сернистого цинка. При попадании - частицы на этот экран она давала вспышку света ‑ сцинтилляцию (поэтому такие экраны называются сцинтилляционными экранами), которая регистрировалась с помощью зрительной трубы М. Положение экрана и зрительной трубы могло быть установлено под любым углом к направлению распространения луча - частиц. Тем самым можно было подсчитать число - частиц, распространяющихся под разными углами.

Рис. 39. Опыт Резерфорда

Оказалось, что -частицы могут как проходить через фольгу насквозь по прямой, так и полностью отражаться от нее. Большинство
- частиц отклоняется от прямолинейного пути на углы не более 1-2 градусов. Но небольшая доля - частиц отклонялась на значительно большие углы – так, одна - частица из 20 000 возвращается назад ().

Исходя из рассмотренных результатов опыта, в 1911 г. Резерфорд предложил свою, ядерную (планетарную) модель атома. По Резерфорду, в центре атома находится положительно заряженное (+Ze) ядро (радиус ядра ~ 10 -13 см), вокруг которого расположены Z электронов. Масса ядра намного больше массы электронов.

Ядерная модель атома позволила объяснить наблюдаемое в опыте Резерфорда отклонение - частиц от прямолинейной траектории: между положительно заряженными - частицами и положительно заряженным ядром возникают силы кулоновского отталкивания.

Экспериментальное подтверждение ядерной модели атома, предложенной Резерфордом, тем не менее, не разрешило противоречий этой модели с законами классической механики и электродинамики.

Противоречие 1: поскольку система неподвижных электрических зарядов неустойчива, Резерфорд предположил, что электроны не статичны, а движутся вокруг ядра; а значит, имеют центростремительное ускорение. Но при этом, согласно представлениям классической физики, электрон, как любой ускоренно движущийся заряд, должен непрерывно излучать электромагнитные волны. Между тем в нормальном состоянии атомы не излучают.

Противоречие 2: теряя энергию в процессе излучения электромагнитных волн, электрон, в конце концов, должен упасть на ядро (расчетное время падения ~ 10 -8 с.). Следовательно, по модели Резерфорда атом является неустойчивой системой, что противоречит реальной действительности.



Противоречие 3: по Резерфорду, электроны при движении вокруг ядра удерживаются кулоновскими силами:

где – заряд ядра, m – масса электрона, – его скорость, r – радиус орбиты. Поскольку на радиус r не накладывается никаких ограничений, скорость электрона, а значит, и его кинетическая энергия может быть любой.

Это значит, что спектр испускания атома должен быть непрерывным. Однако реальные атомные спектры испускания состоят из отдельных линий (которые объединяются в серии линий).

Т.е. ядерная модель атома оказалась неспособна объяснить ни устойчивость атома, ни характер атомного спектра . Выход из ситуации был найден в 1913 г. Бором, который предложил новую модель атома, введя предположения, противоречащие классическим представлениям. В основу своей теории он положил два постулата.



Строение атома является сложным. Это подтверждают открытия таких явлений, как электрон, рентгеновские лучи и радиоактивность. В результате теоретических исследований и многочисленных опытов была построена теория строения атома . Особенно важный вклад в создание теории строения атома внёс английский физик Эрнест Резерфорд (1871 – 1937), который проводил опыты по изучению прохождения альфа-частиц через тонкие металлические пластины золота и платины.

Резерфорд в 1906 году предложил провести зондирование атомов тяжёлых элементов альфа-частиц с энергией 4,05 МэВ, которые испускались ядром урана или радия. Таким образом предлагалось изучить рассеяние (изменение направления движения) альфа-частиц в веществе.

Масса альфа-частицы примерно в 8000 раз больше массы электрона. Положительный заряд равен по модулю удвоенному заряду электрона 2е. Скорость альфа-частицы составляет 1/15 скорости света или 2 * 10 7 м/с. Альфа-частица – это полностью ионизированный атом гелия.

Упрощенная схема опытов Резерфорда изображена на рис. 1.1. Альфа-частицы испускались радиоактивным источником 1, помещённым внутри свинцового цилиндра 2 с узким каналом 3. Узкий пучок альфа-частиц из канала падал на фольгу 4 из исследуемого материала, перпендикулярно к поверхности фольги. Из свинцового цилиндра альфа-частицы проходили только через канал, а остальные поглощались свинцом. Прошедшие сквозь фольгу и рассеянные ею альфа-частицы попадали на полупрозрачный экран 5, который был покрыт люминесцирующим веществом (сульфатом цинка). Это вещество было способно светиться при ударе об него альфа-частицы. Столкновение каждой частицы с экраном сопровождалось вспышкой света. Эта вспышка называется сцинтилляция (от латинского scintillation – сверкание, кратковременная вспышка света). За экраном находился микроскоп 6. Чтобы не происходило дополнительного рассеяния альфа-частиц в воздухе, весь прибор размещался в сосуде с достаточным вакуумом.

Рис. 1.1. Упрощённая схема опытов Резерфорда.

В отсутствие фольги на экране возникал светлый кружок, состоящий из сцинтилляций, вызванных тонким пучком альфа-частиц. Но когда на пути движения альфа-частиц помещали тонкую золотую фольгу толщиной примерно 0,1 мк (микрон), то наблюдаемая на экране картинка сильно менялась: отдельные вспышки появлялись не только за пределами прежнего кружка, но их можно было даже наблюдать с противоположной стороны золотой фольги.

Подсчитывая число сцинтилляций в единицу времени в разных местах экрана, можно установить распределение в пространстве рассеянных альфа-частиц. Число альфа-частиц быстро убывает с увеличением угла рассеяния.

Наблюдаемая на экране картина позволила заключить, что большинство альфа-частиц проходит сквозь золотую фольгу без заметного изменения направления их движения. Однако некоторые частицы отклонялись на большие углы от первоначального направления альфа-частиц (порядка 135 о …150 о) и даже отбрасывались назад. Исследования показали, что при прохождении альфа-частиц сквозь фольгу примерно на каждые 10000 падающих частиц только одна отклоняется на угол более 10 о от первоначального направления движения. Лишь в виде редкого исключения одна из огромного числа альфа-частиц отклоняется от своего первоначального направления.

Тот факт, что многие альфа-частицы проходили сквозь фольгу, не отклоняясь от своего направления движения, говорит о том, что атом не является сплошным образованием. Так как масса альфа-частицы почти в 8000 раз превосходит массу электрона, то электроны, входящие в состав атомов фольги, не могут заметно изменить траекторию альфа-частиц. Рассеяние альфа-частиц может вызывать положительно заряженная частица атома – атомное ядро.

Атомное ядро – это тело малых размеров, в котором сконцентрированы почти вся масса и почти весь положительный заряд атома.

Чем ближе альфа-частица подходила к ядру, тем больше была сила электрического взаимодействия и тем на больший угол частица отклонялась. На малых расстояниях от ядра положительно-заряженная альфа-частица испытывает значительную силу отталкивания F от ядра, которую определяют по закону Кулона:

F =

где r – расстояние от ядра до альфа-частицы; ε 0 – электрическая постоянная в единицах измерения СИ; p – число протонов в ядре; е = 1,6*10-19 Кл – абсолютное значение элементарного электрического заряда (заряда электрона); 2e – заряд альфа-частицы

На рисунке 1.2 показаны траектории альфа-частиц, пролетающих на различных расстояниях от ядра.

Резерфорд смог ввести формулу, связывающую количество рассеянных на определённый угол альфа-частиц с энергией альфа-частиц и протонов р в ядре атома. Опытная проверка формулы подтвердила её справедливость и показала, что количество протонов в ядре равно числу внутриатомных электронов Z и определяется атомным номером химического элемента (то есть порядковым номером элемента в периодической системе Д.И.Менделеева):

p = Z

Рис. 1.2. Траектории альфа-частиц.

Подсчитывая количество альфа-частиц, рассеянных на различные углы, Резерфорд смог оценить линейные размеры ядра. Чтобы положительное ядро могло отбросить альфа-частицу назад, потенциальная энергия электростатического (кулоновского) отталкивания у границ ядра атома должна равняться кинетической энергии альфа-частицы:

=

Оказалось, что ядро имеет диаметр:

D я = 10 -13 …10 -12 см = 10 -15 …10 -14 м

Линейный диаметр самого атома:

D a = 10 -8 см = 10 -10 м

Планетарная модель атома

После анализа многочисленных опытов, Резерфордом в 1911 году была предложена планетарная модель атома (ядерная модель атома).

Согласно этой модели в центре атома находится положительно заряженное ядро, в котором сосредоточена почти вся масса атома. Вокруг ядра вращаются по орбитам отрицательно заряженные электроны. Электроны движутся вокруг ядра на относительно больших расстояниях, подобно тому, как планеты вращаются вокруг солнца. Из совокупности этих электронов образуется электронная оболочка или электронное облако .

Атом в целом нейтрален, следовательно, абсолютное значение суммарного отрицательного заряда электронов равно положительному заряду ядра: число Z*e протонов в ядре равно числу электронов в электронном облаке и совпадает с порядковым номером (атомным номером) Z атома данного химического элемента в периодической системе Д.И.Менделеева.

Например, атом водорода имеет порядковый номер Z = 1, следовательно, атом водорода состоит из положительного ядра с зарядом, равным абсолютному значению заряда электрона. Вокруг ядра вращается один электрон. Ядро атома водорода названо протоном. Атом лития имеет порядковый номер Z = 3, следовательно, вокруг ядра атома лития вращаются 3 электрона.

Эрнест Резерфорд - это один из основателей фундаментального учения о внутреннем строении атома. Родился ученый в Англии, в семье эмигрантов из Шотландии. Резерфорд был четвертым ребенком в своей семье, при этом оказался самым талантливым. Особый вклад ему удалось внести в теорию строения атома.

Первоначальные представления о строении атома

Нужно отметить, что до того, как был проведен знаменитый опыт Резерфорда по рассеянию альфа-частиц, господствующей на то время идеей о строении атома была модель Томпсона. Этот ученый был уверен, что положительный заряд равномерно заполнял весь объем атома целиком. Отрицательно заряженные электроны, считал Томпсон, были будто бы вкраплениями в него.

Предпосылки к научному перевороту

После окончании школы Резерфорд как самый талантливый ученик получил грант в 50 фунтов для дальнейшего обучения. Благодаря этому он сумел поступить в колледж в Новой Зеландии. Далее молодой ученый сдает экзамены в Кентерберийском университете и начинает серьезно заниматься физикой и химией. В 1891 году Резерфорд сделал свой первый доклад на тему «Эволюция элементов». В нем впервые в истории была обозначена идея о том, что атомы представляют собой сложнейшие структуры.

Тогда в научных кругах господствовала идея Дальтона о том, что атомы неделимы. Всем, кто окружал Резерфорда, его идее показались совершенным безумием. Молодому ученому приходилось постоянно приносить извинения коллегам за свою «чепуху». Но через 12 лет Резерфорд все же сумел доказать свою правоту. У Резерфорда появился шанс продолжить свои исследования в Кавендишской лаборатории в Англии, где он начал изучать процессы ионизации воздуха. Первым открытием Резерфорда были альфа- и бета-лучи.

Опыт Резерфорда

Кратко об открытиии можно рассказать так: в 1912 году Резерфорд вместе со своими помощниками провел свой знаменитый опыт - альфа-частицы испускались из свинцового источника. Все частицы, кроме тех, что оказывались поглощенными свинцом, двигались вдоль установленного канала. Их узкий поток попадал на тонкий слой фольги. Эта линия была перпендикулярна листу. Опыт Резерфорда по рассеянию альфа-частиц доказал: те частицы, которые проходили сквозь лист фольги насквозь, вызывали так называемые сцинтилляции на экране.

Этот экран был покрыт особым веществом, которое начинало светиться при попадании на него альфа-частиц. Пространство между слоем золотой фольги и экраном было заполнено вакуумом для того, чтобы альфа-частицы не рассеивались в воздухе. Такой прибор позволил исследователям наблюдать частицы, рассеивающиеся под углом порядка 150°.

Если же фольгу не использовали в качестве препятствия перед пучком из альфа-частиц, то на экране образовывался светлый кружок из сцинтилляций. Но как только перед их лучом ставили барьер из золотой фольги, то картина сильно менялась. Вспышки появлялись не только вне этого кружка, но и на противоположной стороне фольги. Опыт Резерфорда по рассеянию альфа-частиц показал, что большинство частиц проходит через фольгу без заметных изменений в траектории движения.

При этом некоторые частицы отклонялись под довольно большим углом и даже отбрасывались назад. На каждые 10 000 свободно проходящих через слой золотой фольги частиц лишь одна отклонялась на угол, превышавший 10° - в виде исключения одна из частиц отклонялась на такой угол.

Причина, по которой отклонялись альфа-частицы

То, что детально рассмотрел и доказал опыт Резерфорда - строение атома. Такое положение свидетельствовало о том, что атом не представляет собой сплошное образование. Большинство частиц свободно проходили через фольгу толщиной в один атом. И поскольку масса альфа-частицы практически в 8 000 раз больше массы электрона, то последний не мог бы существенно повлиять на траекторию альфа-частицы. Это могло бы быть сделанным лишь атомным ядром - телом малых размеров, обладающим почти всей массой и всем электрическим зарядом атома. На тот момент это стало значительным прорывом английского физика. Опыт Резерфорда считается одной из важнейших ступеней в становлении науки о внутреннем строении атома.

Другие открытия, полученные в процессе изучения атома

Эти исследования стали прямым доказательством того, что положительный заряд атома находится внутри его ядра. Эта область занимает весьма малое пространство по сравнению с его целостными размерами. В таком малом объеме рассеяние альфа-частиц оказалось очень маловероятным. А те частицы, которые проходили вблизи области атомного ядра, испытывали резкие отклонения от траектории, ведь отталкивающие силы между альфа-частицей и ядром атома были очень мощными. Опыт Резерфорда по рассеянию альфа-частиц доказал вероятность того, что альфа-частица попадет прямо в ядро. Правда, вероятность была очень мала, но все же не равна нулю.

Это был не единственный факт, который доказал опыт Резерфорда. Кратко строение атома изучали и его коллеги, которые сделали ряд других важных открытий. Кроме учения о том, что альфа-частицы представляют собой быстро движущиеся ядра гелия.

Ученый смог описать строение атома, в котором ядро занимает незначительную часть всего объема. Его опыты доказали, что практически весь заряд атома сосредоточен внутри его ядра. При этом происходят как случаи отклонения альфа-частиц, так и случаи их столкновения с ядром.

Опыты Резерфорда: ядерная модель атома

В 1911 году Резерфорд после многочисленных исследований предложил модель строения атома, которую назвал планетарной. Согласно данной модели, внутри атома расположено ядро, которое содержит в себе практически всю массу частицы. Электроны движутся вокруг ядра подобно тому, как это делают планеты вокруг Солнца. Из их совокупности образуется так называемое электронное облако. Атом же имеет нейтральный заряд, как показал опыт Резерфорда.

Строение атома в дальнейшем заинтересовало ученого по имени Нильс Бор. Именно он доработал учение Резерфорда, ведь до Бора планетарная модель атома стала сталкиваться с трудностями объяснения. Так как электрон движется вокруг ядра по определенной орбите с ускорением, рано или поздно он должен упасть на ядро атома. Однако Нильс Бор смог доказать, что внутри атома законы классической механики уже не действуют.