Τιμές κλασματικής εφαπτομένης συνημιτόνου. Μέτρο μοίρας γωνίας. Ακτινικό μέτρο γωνίας. Μετατροπή μοιρών σε ακτίνια και πλάτη


Πίνακας τιμών τριγωνομετρικών συναρτήσεων

Σημείωση. Αυτός ο πίνακας τιμών τριγωνομετρικών συναρτήσεων χρησιμοποιεί το σύμβολο √ για να αναπαραστήσει την τετραγωνική ρίζα. Για να υποδείξετε ένα κλάσμα, χρησιμοποιήστε το σύμβολο "/".

δείτε επίσηςχρήσιμα υλικά:

Για τον προσδιορισμό της τιμής μιας τριγωνομετρικής συνάρτησης, να το βρείτε στην τομή της ευθείας που δείχνει την τριγωνομετρική συνάρτηση. Για παράδειγμα, ημίτονο 30 μοίρες - αναζητούμε τη στήλη με την επικεφαλίδα αμαρτία (ημιτονοειδές) και βρίσκουμε την τομή αυτής της στήλης πίνακα με τη σειρά "30 μοίρες", στη διασταύρωση τους διαβάζουμε το αποτέλεσμα - ένα μισό. Παρόμοια βρίσκουμε συνημίτονο 60βαθμούς, ημιτονο 60μοίρες (για άλλη μια φορά, στη διασταύρωση της στήλης sin και της γραμμής 60 μοιρών βρίσκουμε την τιμή sin 60 = √3/2), κ.λπ. Οι τιμές των ημιτόνων, των συνημιτόνων και των εφαπτομένων άλλων «δημοφιλών» γωνιών βρίσκονται με τον ίδιο τρόπο.

Ημιτόνου π, συνημίτονο π, εφαπτομένης π και άλλες γωνίες σε ακτίνια

Ο παρακάτω πίνακας συνημίτονων, ημιτόνων και εφαπτομένων είναι επίσης κατάλληλος για την εύρεση της τιμής των τριγωνομετρικών συναρτήσεων των οποίων το όρισμα είναι δίνεται σε ακτίνια. Για να το κάνετε αυτό, χρησιμοποιήστε τη δεύτερη στήλη τιμών γωνίας. Χάρη σε αυτό, μπορείτε να μετατρέψετε την τιμή των δημοφιλών γωνιών από μοίρες σε ακτίνια. Για παράδειγμα, ας βρούμε τη γωνία των 60 μοιρών στην πρώτη γραμμή και ας διαβάσουμε την τιμή της σε ακτίνια κάτω από αυτήν. Οι 60 μοίρες είναι ίσες με π/3 ακτίνια.

Ο αριθμός pi εκφράζει ξεκάθαρα την εξάρτηση της περιφέρειας από το μέτρο της μοίρας της γωνίας. Έτσι, τα ακτίνια pi είναι ίσα με 180 μοίρες.

Οποιοσδήποτε αριθμός εκφράζεται σε pi (ακτίνια) μπορεί εύκολα να μετατραπεί σε μοίρες αντικαθιστώντας το pi (π) με 180.

Παραδείγματα:
1. Sine pi.
sin π = αμαρτία 180 = 0
Έτσι, το ημίτονο του π είναι ίδιο με το ημίτονο των 180 μοιρών και είναι ίσο με μηδέν.

2. Συνημίτονο π.
cos π = cos 180 = -1
Έτσι, το συνημίτονο του π είναι ίδιο με το συνημίτονο των 180 μοιρών και είναι ίσο με μείον ένα.

3. Εφαπτομένη π
tg π = tg 180 = 0
Έτσι, η εφαπτομένη π είναι ίδια με την εφαπτομένη 180 μοιρών και είναι ίση με το μηδέν.

Πίνακας τιμών ημιτόνου, συνημιτόνου, εφαπτομένης για γωνίες 0 - 360 μοίρες (κοινές τιμές)

τιμή γωνίας α
(βαθμοί)

τιμή γωνίας α
σε ακτίνια

(μέσω pi)

αμαρτία
(κόλπος)
cos
(συνημίτονο)
tg
(εφαπτομένη γραμμή)
ctg
(συνεφαπτομένη)
δευτ
(διατέμνων)
cosec
(συντεμνούσα)
0 0 0 1 0 - 1 -
15 π/12 2 - √3 2 + √3
30 π/6 1/2 √3/2 1/√3 √3 2/√3 2
45 π/4 √2/2 √2/2 1 1 √2 √2
60 π/3 √3/2 1/2 √3 1/√3 2 2/√3
75 5π/12 2 + √3 2 - √3
90 π/2 1 0 - 0 - 1
105 7π/12 -
- 2 - √3 √3 - 2
120 2π/3 √3/2 -1/2 -√3 -√3/3
135 3π/4 √2/2 -√2/2 -1 -1 -√2 √2
150 5π/6 1/2 -√3/2 -√3/3 -√3
180 π 0 -1 0 - -1 -
210 7π/6 -1/2 -√3/2 √3/3 √3
240 4π/3 -√3/2 -1/2 √3 √3/3
270 3π/2 -1 0 - 0 - -1
360 0 1 0 - 1 -

Εάν στον πίνακα τιμών των τριγωνομετρικών συναρτήσεων υποδεικνύεται μια παύλα αντί για την τιμή της συνάρτησης (εφαπτομένη (tg) 90 μοίρες, συνεφαπτομένη (ctg) 180 μοίρες), τότε για μια δεδομένη τιμή του βαθμού μέτρο της γωνίας η συνάρτηση δεν έχει συγκεκριμένη αξία. Εάν δεν υπάρχει παύλα, το κελί είναι κενό, πράγμα που σημαίνει ότι δεν έχουμε εισαγάγει ακόμα την απαιτούμενη τιμή. Μας ενδιαφέρει για ποια ερωτήματα έρχονται σε εμάς οι χρήστες και συμπληρώνουν τον πίνακα με νέες τιμές, παρά το γεγονός ότι τα τρέχοντα δεδομένα για τις τιμές των συνημιτόνων, των ημιτόνων και των εφαπτομένων των πιο κοινών τιμών γωνίας είναι αρκετά επαρκή για την επίλυση των περισσότερων προβλήματα.

Πίνακας τιμών τριγωνομετρικών συναρτήσεων sin, cos, tg για τις πιο δημοφιλείς γωνίες
0, 15, 30, 45, 60, 90 ... 360 μοίρες
(αριθμητικές τιμές "σύμφωνα με τους πίνακες Bradis")

τιμή γωνίας α (μοίρες) τιμή γωνίας α σε ακτίνια αμαρτία (sine) cos (συνημίτονο) tg (εφαπτομένη) ctg (συνεφαπτομένη)
0 0
15

0,2588

0,9659

0,2679

30

0,5000

0,5774

45

0,7071

0,7660

60

0,8660

0,5000

1,7321

7π/18


Αυτό το άρθρο περιέχει πίνακες ημιτόνων, συνημιτόνων, εφαπτομένων και συνεφαπτομένων. Αρχικά, θα παρέχουμε έναν πίνακα με τις βασικές τιμές των τριγωνομετρικών συναρτήσεων, δηλαδή έναν πίνακα ημιτόνων, συνημιτόνων, εφαπτομένων και συνεφαπτομένων γωνιών 0, 30, 45, 60, 90, ..., 360 μοιρών ( 0, π/6, π/4, π/3, π/2, …, 2πακτίνιο). Μετά από αυτό, θα δώσουμε έναν πίνακα ημιτόνων και συνημιτόνων, καθώς και έναν πίνακα εφαπτομένων και συνεφαπτομένων του V. M. Bradis και θα δείξουμε πώς να χρησιμοποιείτε αυτούς τους πίνακες κατά την εύρεση των τιμών των τριγωνομετρικών συναρτήσεων.

Πλοήγηση στη σελίδα.

Πίνακας ημιτόνων, συνημιτόνων, εφαπτομένων και συνεφαπτομένων για γωνίες 0, 30, 45, 60, 90, ... μοιρών

Βιβλιογραφία.

  • Αλγεβρα:Σχολικό βιβλίο για την 9η τάξη. μέσος όρος σχολείο/Yu. N. Makarychev, N. G. Mindyuk, K. I. Neshkov, S. B. Suvorova; Εκδ. S. A. Telyakovsky. - M.: Education, 1990. - 272 σελ.: ill. - ISBN 5-09-002727-7
  • Μπασμάκοφ Μ. Ι.Άλγεβρα και οι απαρχές της ανάλυσης: Σχολικό βιβλίο. για τις τάξεις 10-11. μέσος όρος σχολείο - 3η έκδ. - Μ.: Εκπαίδευση, 1993. - 351 σελ.: εικ. - ISBN 5-09-004617-4.
  • Αλγεβρακαι η αρχή της ανάλυσης: Proc. για τις τάξεις 10-11. γενική εκπαίδευση ιδρύματα / A. N. Kolmogorov, A. M. Abramov, Yu. P. Dudnitsyn και άλλοι; Εκδ. A. N. Kolmogorov - 14η έκδ. - M.: Education, 2004. - 384 σελ.: ill. - ISBN 5-09-013651-3.
  • Gusev V. A., Mordkovich A. G.Μαθηματικά (εγχειρίδιο για όσους εισέρχονται σε τεχνικές σχολές): Proc. επίδομα.- Μ.; Πιο ψηλά σχολείο, 1984.-351 σ., εικ.
  • Bradis V. M.Τετραψήφιοι μαθηματικοί πίνακες: Για γενική εκπαίδευση. εγχειρίδιο εγκαταστάσεις. - 2η έκδ. - M.: Bustard, 1999.- 96 σελ.: ill. ISBN 5-7107-2667-2

Πίνακας βασικών τριγωνομετρικών συναρτήσεων για γωνίες 0, 30, 45, 60, 90, ... μοιρών

Από τους τριγωνομετρικούς ορισμούς των συναρτήσεων $\sin$, $\cos$, $\tan$ και $\cot$, μπορείτε να μάθετε τις τιμές τους για τις γωνίες $0$ και $90$ μοίρες:

$\sin⁡0°=0$, $\cos0°=1$, $\tan 0°=0$, $\cot 0°$ δεν έχει οριστεί.

$\sin90°=1$, $\cos90°=0$, $\cot90°=0$, $\tan 90°$ δεν έχει οριστεί.

Σε ένα σχολικό μάθημα γεωμετρίας, όταν μελετάμε ορθογώνια τρίγωνα, βρίσκουμε τις τριγωνομετρικές συναρτήσεις των γωνιών $0°$, $30°$, $45°$, $60°$ και $90°$.

Βρέθηκαν τιμές τριγωνομετρικών συναρτήσεων για τις υποδεικνυόμενες γωνίες σε μοίρες και ακτίνια, αντίστοιχα ($0$, $\frac(\pi)(6)$, $\frac(\pi)(4)$, $\frac(\ pi)(3) $, $\frac(\pi)(2)$) για ευκολία απομνημόνευσης και χρήσης εισάγονται σε έναν πίνακα που ονομάζεται τριγωνομετρικός πίνακας, πίνακας βασικών τιμών τριγωνομετρικών συναρτήσεωνκαι ούτω καθεξής.

Όταν χρησιμοποιείτε τύπους μείωσης, ο τριγωνομετρικός πίνακας μπορεί να επεκταθεί σε γωνία $360°$ και, κατά συνέπεια, $2\pi$ ακτίνια:

Χρησιμοποιώντας τις ιδιότητες περιοδικότητας των τριγωνομετρικών συναρτήσεων, κάθε γωνία, η οποία θα διαφέρει από την ήδη γνωστή κατά $360°$, μπορεί να υπολογιστεί και να καταγραφεί σε έναν πίνακα. Για παράδειγμα, η τριγωνομετρική συνάρτηση για τη γωνία $0°$ θα έχει την ίδια τιμή για τη γωνία $0°+360°$ και για τη γωνία $0°+2 \cdot 360°$ και για τη γωνία $0°+3 \cdot 360°$ και τα λοιπά.

Χρησιμοποιώντας έναν τριγωνομετρικό πίνακα, μπορείτε να προσδιορίσετε τις τιμές όλων των γωνιών ενός κύκλου μονάδας.

Σε ένα μάθημα σχολικής γεωμετρίας, υποτίθεται ότι απομνημονεύετε τις βασικές τιμές των τριγωνομετρικών συναρτήσεων που συλλέγονται σε έναν τριγωνομετρικό πίνακα για την ευκολία επίλυσης τριγωνομετρικών προβλημάτων.

Χρησιμοποιώντας έναν πίνακα

Στον πίνακα, αρκεί να βρούμε την απαιτούμενη τριγωνομετρική συνάρτηση και την τιμή της γωνίας ή των ακτίνων για την οποία πρέπει να υπολογιστεί αυτή η συνάρτηση. Στην τομή της γραμμής με τη συνάρτηση και της στήλης με την τιμή, λαμβάνουμε την επιθυμητή τιμή της τριγωνομετρικής συνάρτησης του δεδομένου ορίσματος.

Στο σχήμα μπορείτε να δείτε πώς να βρείτε την τιμή του $\cos⁡60°$, που ισούται με $\frac(1)(2)$.

Ο εκτεταμένος τριγωνομετρικός πίνακας χρησιμοποιείται με τον ίδιο τρόπο. Το πλεονέκτημα της χρήσης του είναι, όπως ήδη αναφέρθηκε, ο υπολογισμός της τριγωνομετρικής συνάρτησης σχεδόν κάθε γωνίας. Για παράδειγμα, μπορείτε εύκολα να βρείτε την τιμή $\tan 1 380°=\tan (1 380°-360°)=\tan(1 020°-360°)=\tan(660°-360°)=\tan300 °$:

Πίνακες Bradis βασικών τριγωνομετρικών συναρτήσεων

Η δυνατότητα υπολογισμού της τριγωνομετρικής συνάρτησης απολύτως οποιασδήποτε τιμής γωνίας για ακέραια τιμή μοιρών και ακέραια τιμή λεπτών παρέχεται με τη χρήση πινάκων Bradis. Για παράδειγμα, βρείτε την τιμή του $\cos⁡34°7"$. Οι πίνακες χωρίζονται σε 2 μέρη: έναν πίνακα τιμών των $\sin$ και $\cos$ και έναν πίνακα τιμών των $ \tan$ και $\cot$.

Οι πίνακες Bradis καθιστούν δυνατή τη λήψη κατά προσέγγιση τιμών τριγωνομετρικών συναρτήσεων με ακρίβεια έως και 4 δεκαδικών ψηφίων.

Χρήση πινάκων Bradis

Χρησιμοποιώντας τους πίνακες Bradis για ημίτονο, βρίσκουμε $\sin⁡17°42"$. Για να το κάνετε αυτό, στην αριστερή στήλη του πίνακα ημιτόνων και συνημιτόνων βρίσκουμε την τιμή των μοιρών - $17°$ και στην επάνω γραμμή βρίσκουμε την τιμή των λεπτών - $42"$. Στη διασταύρωση τους παίρνουμε την επιθυμητή τιμή:

$\sin17°42"=0,304$.

Για να βρείτε την τιμή $\sin17°44"$ πρέπει να χρησιμοποιήσετε τη διόρθωση στη δεξιά πλευρά του πίνακα. Σε αυτήν την περίπτωση, στην τιμή $42"$, που βρίσκεται στον πίνακα, πρέπει να προσθέσετε μια διόρθωση για $2 "$, που ισούται με 0,0006$. Παίρνουμε:

$\sin17°44"=0,304+0,0006=0,3046$.

Για να βρούμε την τιμή $\sin17°47"$ χρησιμοποιούμε επίσης τη διόρθωση στη δεξιά πλευρά του πίνακα, μόνο σε αυτήν την περίπτωση παίρνουμε ως βάση την τιμή $\sin17°48"$ και αφαιρούμε τη διόρθωση για $1"$ :

$\sin17°47"=0,3057-0,0003=0,3054$.

Κατά τον υπολογισμό των συνημίτονων, εκτελούμε παρόμοιες ενέργειες, αλλά κοιτάμε τις μοίρες στη δεξιά στήλη και τα λεπτά στην κάτω στήλη του πίνακα. Για παράδειγμα, $\cos20°=0,9397$.

Δεν υπάρχουν διορθώσεις για τιμές εφαπτομένης έως $90°$ και μικρής γωνίας συνεφαπτομένης. Για παράδειγμα, ας βρούμε $\tan 78°37"$, που σύμφωνα με τον πίνακα ισούται με $4,967 $.

Τον πέμπτο αιώνα π.Χ., ο αρχαίος Έλληνας φιλόσοφος Ζήνων από την Ελαία διατύπωσε τις περίφημες απορίας του, η πιο γνωστή από τις οποίες είναι η απορία «Αχιλλέας και η Χελώνα». Να πώς ακούγεται:

Ας πούμε ότι ο Αχιλλέας τρέχει δέκα φορές πιο γρήγορα από τη χελώνα και είναι χίλια βήματα πίσω της. Κατά τη διάρκεια του χρόνου που χρειάζεται ο Αχιλλέας για να τρέξει αυτή την απόσταση, η χελώνα θα σέρνεται εκατό βήματα προς την ίδια κατεύθυνση. Όταν ο Αχιλλέας τρέχει εκατό βήματα, η χελώνα σέρνεται άλλα δέκα βήματα, και ούτω καθεξής. Η διαδικασία θα συνεχιστεί επ’ άπειρον, ο Αχιλλέας δεν θα προλάβει ποτέ τη χελώνα.

Αυτό το σκεπτικό έγινε ένα λογικό σοκ για όλες τις επόμενες γενιές. Αριστοτέλης, Διογένης, Καντ, Χέγκελ, Χίλμπερτ... Όλοι θεωρούσαν την απορία του Ζήνωνα με τον ένα ή τον άλλο τρόπο. Το σοκ ήταν τόσο δυνατό που " ... οι συζητήσεις συνεχίζονται μέχρι σήμερα· η επιστημονική κοινότητα δεν έχει καταφέρει ακόμη να καταλήξει σε κοινή γνώμη για την ουσία των παραδόξων ... μαθηματική ανάλυση, θεωρία συνόλων, νέες φυσικές και φιλοσοφικές προσεγγίσεις συμμετείχαν στη μελέτη του ζητήματος ; κανένα από αυτά δεν έγινε μια γενικά αποδεκτή λύση στο πρόβλημα..."[Wikipedia, "Zeno's Aporia". Όλοι καταλαβαίνουν ότι τους κοροϊδεύουν, αλλά κανείς δεν καταλαβαίνει σε τι συνίσταται η εξαπάτηση.

Από μαθηματική άποψη, ο Ζήνων στην απορία του έδειξε ξεκάθαρα τη μετάβαση από την ποσότητα στο . Αυτή η μετάβαση συνεπάγεται εφαρμογή αντί για μόνιμες. Από όσο καταλαβαίνω, η μαθηματική συσκευή για τη χρήση μεταβλητών μονάδων μέτρησης είτε δεν έχει ακόμη αναπτυχθεί, είτε δεν έχει εφαρμοστεί στην απορία του Ζήνωνα. Η εφαρμογή της συνηθισμένης λογικής μας οδηγεί σε μια παγίδα. Εμείς, λόγω της αδράνειας της σκέψης, εφαρμόζουμε σταθερές μονάδες χρόνου στην αμοιβαία τιμή. Από φυσική άποψη, αυτό μοιάζει να επιβραδύνεται ο χρόνος μέχρι να σταματήσει εντελώς τη στιγμή που ο Αχιλλέας προλαβαίνει τη χελώνα. Αν ο χρόνος σταματήσει, ο Αχιλλέας δεν μπορεί πλέον να ξεπεράσει τη χελώνα.

Αν γυρίσουμε τη συνηθισμένη μας λογική, όλα μπαίνουν στη θέση τους. Ο Αχιλλέας τρέχει με σταθερή ταχύτητα. Κάθε επόμενο τμήμα της διαδρομής του είναι δέκα φορές μικρότερο από το προηγούμενο. Αντίστοιχα, ο χρόνος που δαπανάται για την αντιμετώπισή του είναι δέκα φορές μικρότερος από τον προηγούμενο. Εάν εφαρμόσουμε την έννοια του «άπειρου» σε αυτήν την κατάσταση, τότε θα ήταν σωστό να πούμε «Ο Αχιλλέας θα προλάβει τη χελώνα απείρως γρήγορα».

Πώς να αποφύγετε αυτή τη λογική παγίδα; Παραμείνετε σε σταθερές μονάδες χρόνου και μην μεταβείτε σε αντίστροφες μονάδες. Στη γλώσσα του Ζήνωνα μοιάζει με αυτό:

Στον χρόνο που χρειάζεται ο Αχιλλέας για να τρέξει χίλια βήματα, η χελώνα θα σέρνεται εκατό βήματα προς την ίδια κατεύθυνση. Στο επόμενο χρονικό διάστημα ίσο με το πρώτο, ο Αχιλλέας θα τρέξει άλλα χίλια βήματα και η χελώνα θα σέρνεται εκατό βήματα. Τώρα ο Αχιλλέας είναι οκτακόσια βήματα μπροστά από τη χελώνα.

Αυτή η προσέγγιση περιγράφει επαρκώς την πραγματικότητα χωρίς λογικά παράδοξα. Αλλά αυτό δεν είναι μια πλήρης λύση στο πρόβλημα. Η δήλωση του Αϊνστάιν για το ακαταμάχητο της ταχύτητας του φωτός μοιάζει πολύ με την απορία του Ζήνωνα «Ο Αχιλλέας και η Χελώνα». Πρέπει ακόμα να μελετήσουμε, να ξανασκεφτούμε και να λύσουμε αυτό το πρόβλημα. Και η λύση πρέπει να αναζητηθεί όχι σε απείρως μεγάλους αριθμούς, αλλά σε μονάδες μέτρησης.

Μια άλλη ενδιαφέρουσα απορία του Ζήνωνα λέει για ένα ιπτάμενο βέλος:

Ένα ιπτάμενο βέλος είναι ακίνητο, αφού σε κάθε στιγμή του χρόνου είναι σε ηρεμία, και αφού είναι σε ηρεμία σε κάθε στιγμή του χρόνου, είναι πάντα σε ηρεμία.

Σε αυτήν την απορία, το λογικό παράδοξο ξεπερνιέται πολύ απλά - αρκεί να διευκρινίσουμε ότι σε κάθε στιγμή ένα ιπτάμενο βέλος βρίσκεται σε ηρεμία σε διαφορετικά σημεία του χώρου, που στην πραγματικότητα είναι κίνηση. Εδώ πρέπει να σημειωθεί ένα άλλο σημείο. Από μια φωτογραφία ενός αυτοκινήτου στο δρόμο είναι αδύνατο να προσδιοριστεί ούτε το γεγονός της κίνησής του ούτε η απόσταση από αυτό. Για να προσδιορίσετε αν ένα αυτοκίνητο κινείται, χρειάζεστε δύο φωτογραφίες που τραβήχτηκαν από το ίδιο σημείο σε διαφορετικά χρονικά σημεία, αλλά δεν μπορείτε να προσδιορίσετε την απόσταση από αυτές. Για να προσδιορίσετε την απόσταση από ένα αυτοκίνητο, χρειάζεστε δύο φωτογραφίες από διαφορετικά σημεία του χώρου σε μια χρονική στιγμή, αλλά από αυτές δεν μπορείτε να προσδιορίσετε το γεγονός της κίνησης (φυσικά, χρειάζεστε επιπλέον δεδομένα για υπολογισμούς, η τριγωνομετρία θα σας βοηθήσει ). Αυτό στο οποίο θέλω να επιστήσω ιδιαίτερη προσοχή είναι ότι δύο σημεία στο χρόνο και δύο σημεία στο χώρο είναι διαφορετικά πράγματα που δεν πρέπει να συγχέονται, γιατί παρέχουν διαφορετικές ευκαιρίες για έρευνα.

Τετάρτη 4 Ιουλίου 2018

Οι διαφορές μεταξύ συνόλου και πολλαπλών συνόλων περιγράφονται πολύ καλά στη Wikipedia. Ας δούμε.

Όπως μπορείτε να δείτε, "δεν μπορούν να υπάρχουν δύο πανομοιότυπα στοιχεία σε ένα σύνολο", αλλά εάν υπάρχουν πανομοιότυπα στοιχεία σε ένα σύνολο, ένα τέτοιο σύνολο ονομάζεται "πολυσύνολο". Τα λογικά όντα δεν θα καταλάβουν ποτέ μια τέτοια παράλογη λογική. Αυτό είναι το επίπεδο των παπαγάλων που μιλάνε και των εκπαιδευμένων πιθήκων, που δεν έχουν νοημοσύνη από τη λέξη «εντελώς». Οι μαθηματικοί λειτουργούν ως απλοί εκπαιδευτές, κηρύττοντας μας τις παράλογες ιδέες τους.

Μια φορά κι έναν καιρό, οι μηχανικοί που κατασκεύασαν τη γέφυρα βρίσκονταν σε μια βάρκα κάτω από τη γέφυρα ενώ δοκίμαζαν τη γέφυρα. Αν η γέφυρα κατέρρεε, ο μέτριος μηχανικός πέθαινε κάτω από τα ερείπια του δημιουργήματός του. Αν η γέφυρα μπορούσε να αντέξει το φορτίο, ο ταλαντούχος μηχανικός κατασκεύασε άλλες γέφυρες.

Ανεξάρτητα από το πόσο κρύβονται οι μαθηματικοί πίσω από τη φράση «να με νου, είμαι στο σπίτι», ή μάλλον, «τα μαθηματικά μελετούν αφηρημένες έννοιες», υπάρχει ένας ομφάλιος λώρος που τις συνδέει άρρηκτα με την πραγματικότητα. Αυτός ο ομφάλιος λώρος είναι χρήματα. Ας εφαρμόσουμε τη μαθηματική θεωρία συνόλων στους ίδιους τους μαθηματικούς.

Σπουδάσαμε πολύ καλά μαθηματικά και τώρα καθόμαστε στο ταμείο και βγάζουμε μισθούς. Έρχεται λοιπόν σε εμάς ένας μαθηματικός για τα λεφτά του. Του μετράμε όλο το ποσό και το απλώνουμε στο τραπέζι μας σε διαφορετικούς σωρούς, στους οποίους βάζουμε λογαριασμούς της ίδιας ονομαστικής αξίας. Στη συνέχεια, παίρνουμε έναν λογαριασμό από κάθε σωρό και δίνουμε στον μαθηματικό το «μαθηματικό σύνολο του μισθού» του. Ας εξηγήσουμε στον μαθηματικό ότι θα λάβει τους υπόλοιπους λογαριασμούς μόνο όταν αποδείξει ότι ένα σύνολο χωρίς πανομοιότυπα στοιχεία δεν είναι ίσο με ένα σύνολο με πανομοιότυπα στοιχεία. Εδώ αρχίζει η διασκέδαση.

Πρώτα απ 'όλα, θα λειτουργήσει η λογική των βουλευτών: "Αυτό μπορεί να εφαρμοστεί σε άλλους, αλλά όχι σε μένα!" Τότε θα αρχίσουν να μας καθησυχάζουν ότι τα χαρτονομίσματα της ίδιας ονομαστικής αξίας έχουν διαφορετικούς αριθμούς λογαριασμών, πράγμα που σημαίνει ότι δεν μπορούν να θεωρηθούν τα ίδια στοιχεία. Εντάξει, ας μετρήσουμε τους μισθούς σε νομίσματα - δεν υπάρχουν αριθμοί στα νομίσματα. Εδώ ο μαθηματικός θα αρχίσει να θυμάται μανιωδώς τη φυσική: διαφορετικά νομίσματα έχουν διαφορετικές ποσότητες βρωμιάς, η κρυσταλλική δομή και η διάταξη των ατόμων είναι μοναδική για κάθε νόμισμα...

Και τώρα έχω την πιο ενδιαφέρουσα ερώτηση: πού είναι η γραμμή πέρα ​​από την οποία τα στοιχεία ενός πολυσυνόλου μετατρέπονται σε στοιχεία ενός συνόλου και το αντίστροφο; Δεν υπάρχει τέτοια γραμμή - όλα αποφασίζονται από σαμάνους, η επιστήμη δεν είναι καν κοντά στο να ψεύδεται εδώ.

Κοιτάξτε εδώ. Επιλέγουμε γήπεδα ποδοσφαίρου με τον ίδιο χώρο γηπέδου. Οι περιοχές των πεδίων είναι οι ίδιες - που σημαίνει ότι έχουμε ένα πολυσύνολο. Αλλά αν δούμε τα ονόματα των ίδιων γηπέδων, παίρνουμε πολλά, γιατί τα ονόματα είναι διαφορετικά. Όπως μπορείτε να δείτε, το ίδιο σύνολο στοιχείων είναι και σύνολο και πολυσύνολο. Ποιο είναι σωστό? Και εδώ ο μαθηματικός-σαμάνος-αιχμηρός βγάζει έναν άσσο ατού από το μανίκι του και αρχίζει να μας λέει είτε για σετ είτε για πολυσύνολο. Σε κάθε περίπτωση, θα μας πείσει ότι έχει δίκιο.

Για να κατανοήσουμε πώς λειτουργούν οι σύγχρονοι σαμάνοι με τη θεωρία συνόλων, συνδέοντάς την με την πραγματικότητα, αρκεί να απαντήσουμε σε μια ερώτηση: πώς διαφέρουν τα στοιχεία ενός συνόλου από τα στοιχεία ενός άλλου συνόλου; Θα σας δείξω, χωρίς κανένα «νοητό ως μη ενιαίο σύνολο» ή «μη νοητό ως ενιαίο σύνολο».

Κυριακή 18 Μαρτίου 2018

Το άθροισμα των ψηφίων ενός αριθμού είναι ένας χορός σαμάνων με ντέφι, που δεν έχει καμία σχέση με τα μαθηματικά. Ναι, στα μαθήματα των μαθηματικών διδασκόμαστε να βρίσκουμε το άθροισμα των ψηφίων ενός αριθμού και να το χρησιμοποιούμε, αλλά γι' αυτό είναι σαμάνοι, για να μάθουν στους απογόνους τους τις δεξιότητες και τη σοφία τους, διαφορετικά οι σαμάνοι απλά θα πεθάνουν.

Χρειάζεστε αποδείξεις; Ανοίξτε τη Wikipedia και προσπαθήστε να βρείτε τη σελίδα "Άθροισμα ψηφίων ενός αριθμού". Αυτή δεν υπάρχει. Δεν υπάρχει τύπος στα μαθηματικά που να μπορεί να χρησιμοποιηθεί για να βρεθεί το άθροισμα των ψηφίων οποιουδήποτε αριθμού. Εξάλλου, οι αριθμοί είναι γραφικά σύμβολα με τα οποία γράφουμε αριθμούς και στη γλώσσα των μαθηματικών η εργασία ακούγεται ως εξής: «Βρείτε το άθροισμα των γραφικών συμβόλων που αντιπροσωπεύουν οποιονδήποτε αριθμό». Οι μαθηματικοί δεν μπορούν να λύσουν αυτό το πρόβλημα, αλλά οι σαμάνοι μπορούν να το κάνουν εύκολα.

Ας μάθουμε τι και πώς κάνουμε για να βρούμε το άθροισμα των ψηφίων ενός δεδομένου αριθμού. Και λοιπόν, ας έχουμε τον αριθμό 12345. Τι πρέπει να κάνουμε για να βρούμε το άθροισμα των ψηφίων αυτού του αριθμού; Ας εξετάσουμε όλα τα βήματα με τη σειρά.

1. Σημειώστε τον αριθμό σε ένα κομμάτι χαρτί. Τι καναμε? Μετατρέψαμε τον αριθμό σε σύμβολο γραφικού αριθμού. Δεν πρόκειται για μαθηματική πράξη.

2. Κόβουμε μια εικόνα που προκύπτει σε πολλές εικόνες που περιέχουν μεμονωμένους αριθμούς. Η κοπή μιας εικόνας δεν είναι μαθηματική πράξη.

3. Μετατρέψτε μεμονωμένα γραφικά σύμβολα σε αριθμούς. Δεν πρόκειται για μαθηματική πράξη.

4. Προσθέστε τους αριθμούς που προκύπτουν. Τώρα αυτό είναι μαθηματικά.

Το άθροισμα των ψηφίων του αριθμού 12345 είναι 15. Αυτά είναι τα «μαθήματα κοπής και ραπτικής» που διδάσκονται από σαμάνους που χρησιμοποιούν οι μαθηματικοί. Αλλά δεν είναι μόνο αυτό.

Από μαθηματική άποψη, δεν έχει σημασία σε ποιο σύστημα αριθμών γράφουμε έναν αριθμό. Έτσι, σε διαφορετικά συστήματα αριθμών το άθροισμα των ψηφίων του ίδιου αριθμού θα είναι διαφορετικό. Στα μαθηματικά, το σύστημα αριθμών υποδεικνύεται ως δείκτης στα δεξιά του αριθμού. Με τον μεγάλο αριθμό 12345, δεν θέλω να ξεγελάω το κεφάλι μου, ας εξετάσουμε τον αριθμό 26 από το άρθρο σχετικά. Ας γράψουμε αυτόν τον αριθμό σε δυαδικά, οκταδικά, δεκαδικά και δεκαεξαδικά συστήματα αριθμών. Δεν θα εξετάσουμε κάθε βήμα κάτω από ένα μικροσκόπιο· το έχουμε ήδη κάνει. Ας δούμε το αποτέλεσμα.

Όπως μπορείτε να δείτε, σε διαφορετικά συστήματα αριθμών το άθροισμα των ψηφίων του ίδιου αριθμού είναι διαφορετικό. Αυτό το αποτέλεσμα δεν έχει καμία σχέση με τα μαθηματικά. Είναι το ίδιο σαν να προσδιορίζατε το εμβαδόν ενός ορθογωνίου σε μέτρα και εκατοστά, θα είχατε εντελώς διαφορετικά αποτελέσματα.

Το μηδέν φαίνεται το ίδιο σε όλα τα συστήματα αριθμών και δεν έχει άθροισμα ψηφίων. Αυτό είναι ένα άλλο επιχείρημα υπέρ του γεγονότος ότι. Ερώτηση για μαθηματικούς: πώς ορίζεται κάτι που δεν είναι αριθμός στα μαθηματικά; Τι, για τους μαθηματικούς δεν υπάρχει τίποτα εκτός από αριθμούς; Μπορώ να το επιτρέψω για σαμάνους, αλλά όχι για επιστήμονες. Η πραγματικότητα δεν αφορά μόνο αριθμούς.

Το αποτέλεσμα που προκύπτει θα πρέπει να θεωρείται ως απόδειξη ότι τα συστήματα αριθμών είναι μονάδες μέτρησης για αριθμούς. Εξάλλου, δεν μπορούμε να συγκρίνουμε αριθμούς με διαφορετικές μονάδες μέτρησης. Αν οι ίδιες ενέργειες με διαφορετικές μονάδες μέτρησης της ίδιας ποσότητας οδηγούν σε διαφορετικά αποτελέσματα μετά τη σύγκριση τους, τότε αυτό δεν έχει καμία σχέση με τα μαθηματικά.

Τι είναι τα πραγματικά μαθηματικά; Αυτό συμβαίνει όταν το αποτέλεσμα μιας μαθηματικής πράξης δεν εξαρτάται από το μέγεθος του αριθμού, τη μονάδα μέτρησης που χρησιμοποιείται και από το ποιος εκτελεί αυτήν την ενέργεια.

Σημάδι στην πόρτα Ανοίγει την πόρτα και λέει:

Ω! Αυτή δεν είναι η γυναικεία τουαλέτα;
- Νέα γυναίκα! Αυτό είναι ένα εργαστήριο για τη μελέτη της άφιλης αγιότητας των ψυχών κατά την ανάληψή τους στον ουρανό! Φωτοστέφανο στην κορυφή και βέλος επάνω. Τι άλλη τουαλέτα;

Θηλυκό... Το φωτοστέφανο από πάνω και το βέλος κάτω είναι αρσενικό.

Εάν ένα τέτοιο έργο τέχνης σχεδιασμού αναβοσβήνει μπροστά στα μάτια σας πολλές φορές την ημέρα,

Τότε δεν είναι περίεργο που βρίσκετε ξαφνικά ένα περίεργο εικονίδιο στο αυτοκίνητό σας:

Προσωπικά, προσπαθώ να δω μείον τέσσερις μοίρες σε ένα άτομο που σκάει (μία εικόνα) (μια σύνθεση πολλών εικόνων: ένα σύμβολο μείον, ο αριθμός τέσσερα, ένας προσδιορισμός μοιρών). Και δεν νομίζω ότι αυτό το κορίτσι είναι ανόητο που δεν ξέρει φυσική. Απλώς έχει ένα ισχυρό στερεότυπο για την αντίληψη γραφικών εικόνων. Και αυτό μας διδάσκουν συνέχεια οι μαθηματικοί. Εδώ είναι ένα παράδειγμα.

Το 1Α δεν είναι «μείον τέσσερις μοίρες» ή «ένα α». Αυτό είναι το "pooping man" ή ο αριθμός "είκοσι έξι" σε δεκαεξαδικό συμβολισμό. Όσοι εργάζονται συνεχώς σε αυτό το σύστημα αριθμών αντιλαμβάνονται αυτόματα έναν αριθμό και ένα γράμμα ως ένα γραφικό σύμβολο.